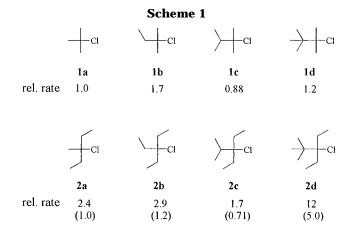
# **B-Strain and Solvolytic Reactivity Revisited.** Nucleophilic Solvent **Participation and Abnormal Rate Ratios** for Tertiary Chloroalkanes

Kwang-Ting Liu, \*.<sup>†</sup> Su-Jiun Hou,<sup>‡</sup> and Meng-Lin Tsao<sup>†</sup>

Department of Chemistry, National Taiwan University, Taipei 106, Republic of China and Department of Chemistry, National Central University, Chung-Li, Taiwan 320, Republic of China

#### Received December 1. 1997

More than half a century elapsed since the concept of steric strain was first advanced to offer reasonable interpretations of several chemical behaviors taking place in highly branched aliphatic systems.<sup>1</sup> Its quantitative evaluation has been developed to become one of the major themes in physical organic chemistry.<sup>2,3</sup> In 1949, Brown and Fletcher gave the first detailed report on the B(back)strain effects in the solvolysis of tertiary chloroalkanes in 80% ethanol.<sup>4</sup> It was proposed that as the tetrahedral chloride ionized to a trigonal carbocation, strain would be relieved with bulkier systems showing greater reactivity. For examples, 2-chloro-2-methylpropane (tert-butyl chloride 1a) was less reactive than 2-chloro-2-methylbutane (1b), and 3-chloro-3-methylpentane (2a) was less reactive than 3-chloro-3-ethylpentane (2b). However, the introduction of an isopropyl group in place of the ethyl group in 1b or 2b resulted in a decrease of reaction rate, whereas a further replacement of the isopropyl group by tert-butyl group made a small rate-enhancement for 2-tert-butyl-2-chloropropane (1d) but a large one for 3-tert-butyl-3-chloropentane (2d) (Scheme 1).4


Several possibilities, such as electronic effects of the alkyl substituent and steric hindrance to the solvation of ions had been suggested to rationalize the irregularity,<sup>4</sup> but to our knowledge no conclusion was ever reached. On the other hand, 2-bromo- and 2-chloro-2-methylpropanes have been considered to solvolyze via a nonlimiting mechanism from the observation of the nonlinear  $\log k$ vs mY plot,<sup>5</sup> and a similar phenomenon has been observed in the solvolysis of 1d.<sup>6</sup> From our study on the solvolysis of chlorides 1b, 1d, 2a-2d, we demonstrate that the abnormal trend of inverse isopropyl/ethyl and tert-butyl/ethyl reactivity ratios is due to the swamping of the relief of B-strain by nucleophilic solvent participation.

## **Results and Discussion**

Chlorides 1b, 1d, 2a-2d were prepared from the controlled chlorination<sup>7</sup> of corresponding alcohols and

\*To whom correspondence should be addressed. Tel.: +886 2 23694966. Fax: +886 2 23636359. E-mail: ktliu@ccms.ntu.edu.tw.

- (2) Stirling, C. J. M. Tetrahedron 1985, 41, 1613.
- (3) Isaacs, N. Physical Organic Chemistry, 2nd ed.; Longman: (4) Brown, H. C.; Fletcher, R. S. *J. Am. Chem. Soc.* **1949**, *71*, 1845.
- (5) Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. *J. Am. Chem. Soc.* **1979**, *101*, 2486.
- (6) Liu, K.-T.; Sheu, H.-C.; Chen, H.-I; Chiu, P.-F.; Hu, C.-R. *Tetrahedron Lett.* **1990**, *31*, 3611.



were solvolyzed in a variety of solvents. Pertinent data of first-order conductometrical rate constants are listed in Table 1. Correlation analyses of log k against  $Y_{Cl}^{8-10}$ using the single-parameter Grunwald-Winstein equation (eq 1)<sup>11</sup> revealed excellent linear relationships for 2c and 2d (Table 2), but downward deviation of data points obtained in 97% hexafluoro-2-propanol (by weight, 97Hw), 70% trifluoroethanol (70Tw), and in trifluoroethanol-ethanol (TE) for other substrates. Representative examples are illustrated in Figure 1. For the dualparameter equation (eq 2),<sup>12</sup> despite the claim of  $N_{\rm T}$  as a general choice among various scales of solvent nucleophilicities,<sup>13</sup> we found the use of  $N_{\text{OTs}}$  by Fujio *et al.*<sup>14</sup> was more appropriate than the use of  $N_{\rm T}$  for certain benzylic chlorides.<sup>15</sup> It is likely due to the importance of the electrophilic pull of anionic leaving group in solvolysis,<sup>16</sup> which is absent in the substrate to define  $N_{\rm T}$  scale. The results are given in Table 2.<sup>17</sup> In the case of 2c, the *k*(97H*w*) from linear log *k* vs *mY* plots, 0.435/s, is in good agreement with that obtained from Arrhenius plots (Table 1). Thus, the extrapolated rate constant for 2d in 97Hw, 4.33/s, could be obtained from eq 1. Recent work by Takeuchi and co-workers indicated a unique solvent effect in a Grunwald-Winstein relationship for highly congested systems.<sup>18</sup> But no such a phenomenon was found in the present study.

$$\log k = mY \qquad (eq 1)$$

$$\log k = mY + lN \qquad (eq 2)$$

It is interesting to note that the inverse isopropyl/ethyl rate ratio for 2 and the inverse tert-butyl/ethyl rate ratio

- (9) Kevill, D. N.; D'Souza, M. J. J. Chem. Res. (S) 1993, 174.
- (10)  $Y_{Cl}$  for 40% trifluoroethanol-60% ethanol (40T60E) was deter-
- (11) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846.
  (12) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700.
  - (13) Kevill, D. N.; Anderson, S. W. J. Chem. Res. (S) 1991, 356.
- (13) Revin, D. N., Anderson, S. W. J. Chem. Res. (3) 1991, 536.
  (14) Fujio, M.; Susuki, T.; Goto, M.; Tsuji, Y.; Yatsugi, K.; Saeki,
  Y.; Kim, S. H.; Tsuno, Y.; Bull. Chem. Soc. Jpn. 1994, 67, 2233.
  (15) Liu, K.-T.; Lin, Y.-S.; Tsao, M.-L. J. Phys. Org. Chem., in press.
  (16) Liu, K.-T.; Tang, C.-S. J. Org. Chem. 1996, 61, 1523.
  (17) Because of the heat of M.
- (17) Because of the short of  $N_{OTs}$  and  $N_T$  values for certain solvents, smaller *n* was used in the dual-parameter analyses.
- (18) Takeuchi, K.; Ohga, Y.; Ushino, T.; Takasuka, M. J. Org. Chem. 1997. 62. 4904.

S0022-3263(97)02169-5 CCC: \$15.00 © 1998 American Chemical Society Published on Web 02/05/1998

National Taiwan University.

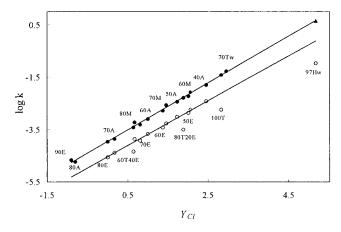
<sup>&</sup>lt;sup>‡</sup> National Central University

<sup>(1)</sup> Brown, H. C. Science, 1946, 103, 385.

<sup>(7)</sup> Brown, H. C.; Rei, M.-H. J. Org. Chem. 1966, 31, 1090.

<sup>(8)</sup> Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121.

Table 1. Pertinent Rate Constants for Solvolysis of Tertiary Alkyl Chlorides


| solvent <sup>a</sup> | <i>k</i> (s <sup>-1</sup> , 25 °C) |                           |                         |                      |                           |                       |  |  |  |
|----------------------|------------------------------------|---------------------------|-------------------------|----------------------|---------------------------|-----------------------|--|--|--|
|                      | 1b                                 | 1d                        | 2a                      | 2b                   | 2c                        | 2d                    |  |  |  |
| 90E                  | $2.86	imes10^{-6}$ b               |                           |                         |                      |                           | $2.15 	imes 10^{-5}$  |  |  |  |
| 80E                  | $1.57	imes 10^{-5~b}$              | $1.10	imes10^{-5}$ c      | $2.26	imes10^{-5}$      | $2.78	imes10^{-5}$   | $1.37	imes 10^{-5}$       | $1.05	imes10^{-4}$    |  |  |  |
| 70E                  | $5.74	imes10^{-5}$ $^{b}$          | $4.45	imes10^{-5}$ c      | $1.01 	imes 10^{-4}$    | $1.20 	imes 10^{-4}$ | $5.15	imes10^{-5}$        | $4.94	imes10^{-4}$    |  |  |  |
| 60E                  | $2.09	imes10^{-4}$                 | $1.38	imes10^{-4}$ $^{c}$ | $2.96	imes10^{-4}$      | $3.84	imes10^{-4}$   | $1.95	imes10^{-4}$        | $1.62 \times 10^{-3}$ |  |  |  |
| 50E                  | $7.54	imes10^{-4}$                 | $5.88	imes10^{-4}$        | $1.12	imes10^{-3}$      | $1.34	imes10^{-3}$   | $7.56	imes10^{-4}$        | $5.82	imes10^{-3}$    |  |  |  |
| 80A                  | $3.20	imes10^{-6}$ $^{b}$          |                           | $3.80	imes10^{-6}$ $^d$ |                      |                           | $2.11	imes10^{-5}$    |  |  |  |
| 70A                  | $1.89	imes10^{-5}$ $^{b}$          | $1.56	imes10^{-5}$        | $2.87	imes10^{-5}$      | $4.10	imes10^{-5}$   | $1.75	imes10^{-5}$        | $1.39	imes10^{-4}$    |  |  |  |
| 60A                  | $7.87	imes10^{-5}$                 | $7.04	imes10^{-5}$ c      | $1.41 	imes 10^{-4}$    | $2.08	imes10^{-4}$   | $1.08	imes 10^{-4}$       | $7.90 	imes 10^{-4}$  |  |  |  |
| 50A                  | $4.49	imes10^{-4}$                 | $3.29	imes10^{-4}$ $^{c}$ | $5.56	imes10^{-4}$      | $9.68	imes10^{-4}$   | $4.59	imes10^{-4}$        | $3.68 \times 10^{-3}$ |  |  |  |
| 40A                  | $1.61	imes10^{-3}$                 | $1.47	imes10^{-3}$ $^{c}$ | $2.36	imes10^{-3}$      | $3.72	imes10^{-3}$   | $2.10	imes10^{-3}$        | $1.59	imes10^{-2}$    |  |  |  |
| 100M                 | $1.81	imes 10^{-6}$ $^{b}$         | $2.06	imes10^{-6}$ $^{c}$ |                         |                      |                           |                       |  |  |  |
| 90M                  |                                    |                           | $1.64	imes 10^{-5}$     |                      |                           |                       |  |  |  |
| 80M                  | $4.40	imes10^{-5}$                 | $4.10	imes10^{-5}$        | $8.45	imes10^{-5}$      | $1.34	imes10^{-4}$   | $6.95	imes10^{-5}$        | $5.94 	imes 10^{-4}$  |  |  |  |
| 70M                  | $1.85	imes10^{-4}$                 | $1.80	imes10^{-4}$        | $3.69	imes10^{-4}$      | $5.31	imes10^{-4}$   | $2.75	imes10^{-4}$        | $2.71 \times 10^{-3}$ |  |  |  |
| 60M                  | $7.17	imes10^{-4}$                 | $6.80	imes10^{-4}$ c      | $1.36	imes10^{-3}$      | $1.80 	imes 10^{-3}$ | $1.19	imes10^{-3}$        | $8.50 	imes 10^{-3}$  |  |  |  |
| 100T                 | $3.82 	imes 10^{-4}$               | $1.11	imes10^{-3}$        | $9.59	imes10^{-4}$      | $1.83	imes10^{-3}$   | $3.78	imes10^{-3}$        | $3.82 	imes 10^{-2}$  |  |  |  |
| 80T20E               | $7.92	imes10^{-5}$                 | $2.03	imes10^{-4}$        | $1.73	imes10^{-4}$      | $3.19	imes10^{-4}$   | $5.17	imes10^{-4}$        | $5.21 	imes 10^{-3}$  |  |  |  |
| 60T40E               | $1.10	imes 10^{-5} d$              | $2.13	imes10^{-5}$        | $2.45	imes10^{-5}$      | $4.42	imes10^{-5}$   | $5.57	imes10^{-5}$        | $3.87 	imes 10^{-1}$  |  |  |  |
| 40T60E               | $2.90	imes10^{-6}$ $^d$            |                           |                         |                      |                           |                       |  |  |  |
| 70Tw                 | $8.60 	imes 10^{-4}$               | $1.99	imes10^{-3}$        |                         |                      | $4.77	imes10^{-3}$        | $5.42	imes10^{-3}$    |  |  |  |
| 97H <i>w</i>         | $1.32	imes10^{-2}$                 | $6.10	imes10^{-2}$        | $4.71	imes10^{-2}$      | $1.21 	imes 10^{-1}$ | $4.32	imes10^{-1}$ $^{d}$ | $4.33^{e}$            |  |  |  |

<sup>*a*</sup> A, E, H, M, and T denote acetone, ethanol, hexafluoro-2-propanol, methanol, and trifluoroethanol, respectively. The number indicates the volume percent of the specific solvent in the mixture, except those followed by *w* refer to weight percent. <sup>*b*</sup> From T.-R. Wu, Ph. D. Thesis, National Taiwan University, August, 1989. <sup>*c*</sup> Reference 6. <sup>*d*</sup> Extrapolated from data obtained at other temperatures, see Experimental Section. <sup>*e*</sup> Extrapolated from eq 1, see: Results and Discussion.

 
 Table 2.
 Correlation Analyses Using Single- and Dual-Parameter Grunwald–Winstein Equations

| substrate | parameter                 | n  | R     | т     | $SD^a$ | 1     | $SD^a$ |
|-----------|---------------------------|----|-------|-------|--------|-------|--------|
| 1b        | Y <sub>Cl</sub>           | 20 | 0.957 | 0.655 | 0.047  |       |        |
|           | $Y_{\rm Cl}, N_{\rm OTs}$ | 19 | 0.991 | 0.835 | 0.033  | 0.351 | 0.046  |
| 1d        | $Y_{\rm Cl}$              | 17 | 0.990 | 0.733 | 0.025  |       |        |
|           | $Y_{\rm Cl}, N_{\rm OTs}$ | 16 | 0.997 | 0.820 | 0.029  | 0.138 | 0.031  |
| 2a        | $Y_{Cl}$                  | 17 | 0.967 | 0.686 | 0.047  |       |        |
|           | $Y_{\rm Cl}, N_{\rm OTs}$ | 15 | 0.996 | 0.881 | 0.029  | 0.298 | 0.033  |
| 2b        | $Y_{\rm Cl}$              | 15 | 0.972 | 0.697 | 0.047  |       |        |
|           | $Y_{\rm Cl}, N_{\rm OTs}$ | 14 | 0.995 | 0.901 | 0.035  | 0.249 | 0.036  |
| 2c        | $Y_{\rm Cl}$              | 15 | 0.998 | 0.869 | 0.015  |       |        |
| 2d        | $Y_{\rm Cl}$              | 17 | 0.998 | 0.887 | 0.014  |       |        |

<sup>a</sup> Standard deviation.



**Figure 1.** Plots of log *k* values for **2b** ( $\bigcirc$ ) and **2d** ( $\bigcirc$ ) against *Y*<sub>Cl</sub> ( $\blacktriangle$  for extrapolated value).

for **1** were observed only in strongly and moderately nucleophilic solvents (aqueous acetone, ethanol, and methanol), but not in weakly nucleophilic solvents (97H, 70T*w*, and TE). The solvolysis of 2-chloro-2-methylpropane (**1a**) has been considered to proceed via a nonlimiting mechanism based on the observation of the deviation of log *k*s in weakly nucleophilic solvents from linear plots against log *k* for 1-chloroadamantane (i.e.,  $Y_{\rm CI}$ ),<sup>5,19</sup>

and also from an appreciable *I* value obtained from eq 2.<sup>9</sup> Similar phenomenon of nonlinear log *k* vs  $Y_{CI}$  plots was also observed in the solvolysis of **1d**.<sup>6</sup> In other words, even a *tert*-butyl group in **1** is not large enough to block the backside completely for nucleophilic solvent participation.<sup>20</sup> More remarkably, the rate-enhancement due to solvent intervention is so effective in the case of **1b** that it overshadows the relief of B-strain for *tert*-butyl group and solvent participation in **1d**, giving  $k(\mathbf{1b}) > k(\mathbf{1d})$  in aqueous acetone, ethanol, and methanol. On the contrary, the normal order of  $k(\mathbf{1d}) < k(\mathbf{1b})$ , as predicted from the relief of B-strain, was observed in TE, 70T*w*, and 97H*w*.

Consequently, the solvolysis rate ratio of 4.6 for 1d/ 1b in  $97Hw^{21,22}$  might be then regarded as the relative B-strain for *tert*-butyl/ethyl in 2-alkyl-2-chloropropanes (1). Moreover, we found k(1a) in 97Hw as  $2.26 \times 10^{-3}/s$ (lit.<sup>23,24</sup> 2.00 to  $2.69 \times 10^{-3}/s$ ), so the relative B-strain for *tert*-butyl/methyl could be assigned as 27, and ethyl/ methyl as 5.8. The former value, 27, is considerably larger than the previously observed *tert*-butyl/methyl reactivity ratios for 2-alkyl-2-propyl chlorides (1.2)<sup>4</sup> and *p*-nitrobenzoates (4.36)<sup>25</sup> in nucleophilic solvents and may be considered as the *normal* factor responsible for the relief of B-strain for *tert*-butyl vs methyl in this system.

<sup>(19)</sup> Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741.
(20) It was recently stated that a neopentyl group could hamper solvent participation completely, see: Takeuchi, K.; Ohga, Y.; Ushino, T.; Takasuka, M. J. Phys. Org. Chem. 1996, 9, 777.

<sup>(21)</sup> Although trifluoroacetic acid was considered to be the least nucleophilic solvent,<sup>22</sup> in our experience it was difficult to obtain reproducible rate constants for halides in this solvent. Moreover, the solvolysis in 97HFIP was considered closer to limiting than in trifluoroacetic acid.<sup>5</sup> Consequently, 97HFIP was the choice of solvent for limiting solvolysis.

<sup>(22)</sup> Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667.

<sup>(23)</sup> Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Chem. Soc., Perkin 2 1980, 1244.

<sup>(24)</sup> Abraham, M. H.; Doherty, R. M.; Kamlet, M. J.; Taft, R. W. J. Chem. Soc., Perkin 2 1987, 913.

<sup>(25)</sup> Lamos, J. S.; Luong, P. K.; Dubois, J.-E. J. Org. Chem. 1979, 44, 1647.

Table 1 shows that for **2a** to **2d** in nucleophilic solvents, the trend of rate constants is invariably **2d**>**2b**>**2a**>**2c**. Obviously, nucleophilic solvent participation in the 3-alkyl-3-pentyl system is not so strong that the relief of B-strain for *tert*-butyl group becomes dominant, although inverse isopropyl/ethyl and isopropyl/methyl orders of reactivities can still be observed. In weakly nucleophilic solvents, however, a normal trend of 2d>2c>2b>2a was found as predicted from the relief of B-strain. Again, nucleophilic solvent participation is no more overwhelming. Rate ratios in 97Hw are 92:9.2:2.6: 1 for 2d:2c:2b:2a. The ratio of 92:1 for 2d/2a and 36:1 for 2d/2b in 97Hw indicate larger B-strain relief for tert-butyl vs methyl and for tert-butyl vs ethyl in the 3-alkyl-3-pentyl than the 3-alkyl-2-propyl system. However, the rate ratio for 2b/ 2a in 97Hw, 2.6, was smaller than that found for 1b/1a (5.8, vide supra). It is likely due to the different groundstate energy difference in those two systems.<sup>26</sup> In addition, the present results suggest the necessity of reexamination about previous work on the correlation between calculated strain energies and the solvolytic reactivity of tertiary alkyl substrates observed in nucleophilic solvents.<sup>25,27</sup> Further studies are in progress.

### **Experimental Section**

**General Remarks.** Boiling points and melting points are uncorrected. Proton NMR spectra (200 or 300 MHz) were used for characterization of chlorides.

**Materials.** The controlled chlorination<sup>7</sup> of alcohols were employed to prepare chlorides **1b**, **1d**, and **2a**–**2d**.<sup>4</sup> The products were purified by distillation at atmosphere pressure or under vacuum. In every case, the proton NMR spectrum indicated a single isomer compatible with the assigned structure. Solvents for kinetic studies were commercially available spectral or reagent grade ones which, except for hexafluoro-2-propanol, had been purified according to conventional methods.<sup>28</sup>

**Kinetic Measurements.** Conductometric rate constants were obtained as described in the previous work.<sup>16</sup> Rate constants determined in 80% ethanol are in good agreement with literature data.<sup>4</sup> Most of the rate constants were measured directly at 25 °C (±0.02 °C), whereas a few were obtained from Arrhenius plots. For **1b**, k(25 °C) in 60T40E was calculated from  $k(70 °C) = 1.68 \times 10^{-3}/s$ ,  $k(60 °C) = 6.09 \times 10^{-4}/s$  and  $k(50 °C) = 2.14 \times 10^{-4}/s$ ; k(25 °C) in 40T60E was calculated from  $k(70 °C) = 4.13 \times 10^{-4}/s$  and  $k(55 °C) = 9.20 \times 10^{-5}/s$ . For **2a**, k(25 °C) in 80A was calculated from  $k(75 °C) = 1.02 \times 10^{-3}/s$ ,  $k(65 °C) = 3.87 \times 10^{-4}/s$  and  $k(50 °C) = 7.72 \times 10^{-5}/s$ . For **2c**, k(25 °C) in 97H*w* was calculated from  $k(5 °C) = 6.50 \times 10^{-2}/s$ , and  $k(10 °C) = 1.07 \times 10^{-2}/s$ . Due to the viscosity of 97H*w*, no reliable *k* could be measured at temperature lower than 5 °C. The results are given in Table 1.

**Acknowledgment.** The support of this research by the National Science Council (Grants NSC 85-2113-M-002-012 and 86-2113-M-002-002) is gratefully acknowledged.

# JO972169+

<sup>(26)</sup> MM2 studies on the carbenium ions from the solvolysis of alkyl bromides suggested larger difference between  $\Delta H (R^+ - RBr)$  for *tert*-butyl and 2-methyl-2-butyl than that between 2-methyl-2-butyl and 2-methyl-2-pentyl.<sup>27</sup> In ongoing research we obtain similar results from MM3 calculations on a series of tertiary alkyl chlorides.

<sup>(27)</sup> Müller, P.; Mareda, J.; Milin, D. J. Phys. Org. Chem. 1995, 8, 507.

<sup>(28)</sup> Perrin, D. D.; Armarogo, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: New York, 1988.